
Disturbance Triggers Non-Linear Microbe-Environment Feedbacks 

Aditi Sengupta1★, Sarah J. Fansler2★, Rosalie K. Chu3, Robert E. Danczak2, Vanessa A. Garayburu-Caruso2, 

Lupita Renteria , Hyun-Seob Song , Jason Toyoda , Jacqueline Hager , and James C. Stegen2 4 3 5 2* 

★These authors contributed equally to this work 

1California Lutheran University, Thousand Oaks, CA 

2Pacific Northwest National Laboratory, Ecosystem Science Team, Richland, WA 

3Environmental Molecular Sciences Laboratory, Richland, WA 

4University of Nebraska-Lincoln, Lincoln, NE 

5Oregon State University, Corvallis, OR 

Correspondence to: James Stegen (James.Stegen@pnnl.gov) 10 

Abstract 

Conceptual frameworks linking microbial community membership, properties, and processes with the 

environment and emergent function have been proposed but remain untested. Here we refine and test a 

recent conceptual framework using hyporheic zone sediments exposed to wetting/drying transitions. 

Throughout the system we found threshold-like responses to the duration of desiccation. Membership of 

the putatively active community--but not the whole community--responded due to enhanced deterministic 

selection (an emergent community property). Concurrently, the thermodynamic properties of organic 

matter became less favorable for oxidation (an environmental component) and respiration decreased (a 

microbial process). While these responses were step functions of desiccation, we observed continuous 

monotonic relationships among community assembly, respiration, and organic matter thermodynamics. 20 

Placing the results in context of our conceptual framework points to previously unrecognized internal 

feedbacks that are initiated by disturbance, mediated by thermodynamics, and that cause the impacts of 

disturbance to be dependent on the history of disturbance. 
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1 Introduction 
Given the influence of microbes over ecosystem function, deeper knowledge of microbe-environment 

relationships is needed to improve ecosystem models (Bier et al., 2015). In turn, there is strong interest 

in quantifying and predicting microbe-environment relationships such as defining microbial life history 

strategies as traits in ecosystem models (Malik et al., 2020), assessing microbial biomass stoichiometry 

distributions in response to changing resource environments (Manzella et al., 2019), and evaluating the 30 

extent of microbial adaptation to changing environments and their role in biogeochemical processes 

(Wallenstein and Hall, 2012). To enhance and synthesize understanding of microbe-environment 

interactions, it is useful to develop conceptual frameworks based on linkages among microbial 

characteristics and ecosystem processes. Previous work has used such frameworks to improve 

mechanistic representation and predictive capacity of microbe-environment interactions in ecosystem 

models (Wieder et al., 2015). 

 

A recently developed framework by Hall et al. (Hall et al., 2018) poses a series of concepts that 

collectively define the intersection between microbial and ecosystem ecology. Their framework draws 

attention to causal relationships between microbial characteristics, environmental dynamics, and 40 

cumulative ecosystems processes with the potential to incorporate relevant mechanistic links into 

predictive ecosystem models. A powerful element of the Hall et al. (Hall et al., 2018) framework is that 

it applies to diverse systems spanning natural (Gilbert et al., 2018), host-associated (Lloyd-Price et al., 

2019), and built (Fu et al., 2020) environments as well as across spatiotemporal scales (König et al., 

2018). While potentially very useful, the Hall et al. (Hall et al., 2018) framework has seen little direct 

use in terms of explicitly defining and evaluating the linkages within specific study systems (but see 

Manzella et al., 2019). To make full use of and continually improve the framework, it is necessary to 
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consider different realizations and interpretations of the proposed linkages. In the following paragraphs 

we detail a modified interpretation of the framework (Fig. 1) to enable its application to microbial 

communities and biogeochemistry associated with hyporheic zone sediments experiencing hydrological 50 

disturbance. In turn, we use data from a controlled laboratory experiment to evaluate key linkages within 

the modified framework.  

 

As in Hall et al. (Hall et al., 2018) we consider microbial membership to be directly influenced by 

environmental conditions (arrow 4, Fig.1) and to underlie community-level properties (arrow 1, Fig. 1). 

Determining microbial membership is relatively straightforward, and uses culture-independent (Behrens 

et al., 2012; Norland et al., 1995; Thompson et al., 2017; Wagner, 2009) and culture-dependent 

(Bartelme et al., 2020) techniques. Sequence-based assays using phylogenetic markers are routine, with 

DNA-based (total community members) and RNA-based (putatively active community members) 

(Barnard et al., 2015; Blazewicz et al., 2013; Cardoso et al., 2017; Kearns et al., 2016; Shu et al., 2019; 60 

Wisnoski et al., 2020) approaches providing the foundation to study community properties.  

 

While community membership is relatively straightforward, the identification of community properties 

that are relevant to a given system and function is open to broader interpretation. Here we propose using 

the relative influences of deterministic and stochastic community assembly (Stegen et al., 2012) as 

emergent properties of microbial communities that have implications for biogeochemical function 

(Graham and Stegen, 2017) including in ecosystems experiencing environmental disturbance. 

Deterministic mechanisms are associated with systematic differences in reproductive success imposed 

by the biotic and/or abiotic environment, while stochastic mechanisms are associated with passive 

spatial movements of organisms and birth/death events that are not due to systematic differences across 70 
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taxa in reproductive success (Dini-Andreote et al., 2015; Stegen et al., 2015). The relative contributions 

of determinism and stochasticity can be inferred by coupling microbial community membership and 

phylogeny to ecological null models (Stegen et al., 2012, 2013, 2015; Zhou and Ning, 2017).  

 

We propose the relative contributions of determinism and stochasticity to be an emergent property that 

is greater than the sum of the individual components (i.e., taxa), and that is complementary to the 

community properties proposed by Hall et al. (Hall et al., 2018), such as biomass and gene expression. 

Note that here we conceptualize stochastic and deterministic events as ecological community assembly 

processes and that the relative influences of these ecological processes as an emergent community 

property. The ecological processes of community assembly are distinct from ‘microbial processes’ 80 

associated with biogeochemical reactions. As an emergent property, the relative influence of 

determinism and stochasticity is the result of complex biotic and abiotic interactions (Grilli et al., 2017) 

and also shapes cumulative microbial processes that impact ecosystem biogeochemical functions 

(Graham and Stegen, 2017) (arrow 2, Fig.1). For example, a stronger influence of determinism over 

community assembly is hypothesized to cause higher respiration rates (a microbial processes) due to a 

larger contribution of well-adapted taxa (Graham and Stegen, 2017).  

 

Analyses of microbial community assembly have been widely employed across environments including 

soil (Bottos et al., 2018; Dini-Andreote et al., 2015; Feng et al., 2018; Jurburg et al., 2017; Sengupta et 

al., 2019b), sediment (Graham et al., 2017a; Stegen et al., 2013, 2016, 2018b), marine (Starnawski et al., 90 

2017; Wu et al., 2018), riverine (Chen et al., 2019), gut (Martínez et al., 2015), and engineered (Ofiţeru 

et al., 2010; Zhou et al., 2013) systems. Previous work has focused primarily on using DNA-derived 

membership and phylogenetic data to study whole-community assembly. In contrast, recent studies have 
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also used an RNA-based approach to study the relative influence of stochasticity over the assembly of 

the putatively active portion of microbial communities (Jia et al., 2020; Jurburg et al., 2017). This RNA-

based approach is complementary to the DNA-based approach and may provide additional insights into 

shorter-term dynamic linkages between emergent community properties and microbial processes. Such 

linkages have not, however, been previously evaluated.  

 

The Hall et al. (Hall et al., 2018) framework proposes that microbial processes (e.g., respiration rate) are 100 

influenced by both microbial community properties and environmental factors. Here we propose a 

revision of this structure that includes bidirectional links between the environment and microbial 

processes (arrow 3, Fig. 1). Such bi-directional links between microbes and their environment are 

common (Daly et al., 2016; Leventhal et al., 2019; Ratzke et al., 2018; Stegen et al., 2018a), and in 

hyporheic zone sediments may be particularly tied to thermodynamic properties of organic matter 

(Graham et al., 2018) and influenced by hydrological disturbances that are common in such 

environments. For example, preferential use OM by microbial communities has potential to alter the 

thermodynamic properties of organic matter pools  (Graham et al., 2017a). This microbe-driven shift in 

the environment could then feedback to impact microbial metabolism due to the strong influence of OM 

thermodynamics on biogeochemical rates (Boye et al., 2017; Garayburu-Caruso et al., 2020; Song et al., 110 

2020; Stegen et al., 2018b). Bi-directional feedback between environmental factors and microbial 

processes is, therefore, likely important to the link between microbial communities and ecosystem 

function. Fundamental knowledge of these feedbacks and how they are modulated by hydrologic 

disturbances in hyporheic zone sediments is largely unknown, however. 
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Within ecosystems, mechanistic associations between environmental factors, microbial properties, and 

microbial processes underlie spatial and temporal distributions of biogeochemical rates (Fig. 1 arrow 5). 

The resulting distributions (e.g., of respiration rates) define cumulative system function and can be used 

to understand key phenomena such as biogeochemical hot spots and hot moments (McClain et al., 

2003).  Developing concepts and models to predict the influences of biogeochemical hot spots/moments 120 

is a major outstanding challenge. To facilitate progress,  Bernhardt et al. (Bernhardt et al., 2017) 

proposed grouping hot spots/moments into the concept of ecosystem control points that exert a 

disproportionate influence on ecosystem function.  

 

While not called out explicitly in Bernhardt et al. (2017), the control point concept is based on the 

distribution of biogeochemical rates through space and/or time. Focusing on the shape of rate 

distributions allows the notion of control points to be extended to the concept of control point influence 

(CPI; Fig. 1 arrow 5). The CPI is a quantitative measurement of the contribution of elevated 

biogeochemical rates in space and/or time to the net aggregated rate within a defined system (Arora et 

al., 2020). While proposed conceptually and studied via simulation in Arora et al. (2020), empirical 130 

measurements of CPI are lacking. More generally, incorporating CPI into a modified version of the Hall 

et al. (Hall et al., 2018) framework (Fig. 1), provides an integrated conceptualization for how 

environmental factors, microbial properties, and microbial processes contribute to emergent system 

function. 

 

Some elements of our modified framework (Fig. 1) are generalizable across systems (e.g., CPI), while 

others (e.g., OM thermodynamics) may have different levels of relevance across different ecosystem 

types. Here we aim to generate fundamental knowledge of the linkages between microbial community 
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and ecosystem function, as well as reveal how hydrologic disturbance may modify these linkages. We 

do so by studying the modified conceptual framework in context of variably inundated hyporheic zone 140 

sediments exposed to different drying/wetting dynamics. Hyporheic zones are biogeochemical active 

subsurface domains in river corridors through which surface water flows and can mix with groundwater 

(Bernhardt et al., 2017; Boano et al., 2014; McClain et al., 2003). These zones can have disproportionate 

biogeochemical impacts on river corridors (Boano et al., 2014; Burrows et al., 2017; Demars, 2019; 

Fischer et al., 2005; Kaufman et al., 2017). Within variably inundated streams (Larned et al., 2010; 

Romaní et al., 2006), hyporheic zones experience extreme changes in environmental conditions, but the 

consequences of this variability for microbe-ecosystem linkages is poorly known.  

 

To mimic natural disturbances we subjected sediments to wetting-drying transitions and focused on a 

series of analyses tied to our modified framework. We specifically evaluated relationships between: (i) 150 

the relative influence of stochastic assembly as a community property and respiration rates as a 

microbial process (Fig. 1 arrow 2), and (ii) environmental features and both microbial properties (Fig. 1 

arrow 4) and processes (Fig. 1 arrow 3) that underlie aggregate system function (Fig. 1 arrow 5). We 

hypothesized that: (i) Stronger influences of determinism result in well-adapted microbes that will 

generate higher respiration rates, (ii) Longer duration in an inundated state will result in greater 

influences of stochastic assembly--due to weaker ecological selection--and lower respiration rates 

following re-inundation due to relatively consistent abiotic conditions (Birch, 1964), and (iii) Microbial 

processes are facilitated by OM that is thermodynamically more favorable for oxidation, leading to an 

association between respiration rates and OM thermodynamics. 

 160 

7

https://doi.org/10.5194/bg-2021-51
Preprint. Discussion started: 11 March 2021
c© Author(s) 2021. CC BY 4.0 License.



2 Methods 

2.1 Study site and sediment collection  

Hyporheic sediments were collected from the Columbia River shoreline (approximately 46.372411°N, 

119.271695ºW) in eastern Washington State (Fig S1) (Arntzen, 2006; Goldman et al., 2017; Graham et 

al., 2016; Slater et al., 2010; Stegen et al., 2018b; Zachara et al., 2013) within the Hanford Site on 

January 14, 2019 at 9 am Pacific Standard Time. Samples were aseptically collected to a depth of 10 cm 

at five sub-sampling locations within a meter to form a composite sample that was sieved on site 

through a 2 mm sieve into a clean glass beaker. Sieved sediment was stored on blue ice for 30 min while 

being transported back to the laboratory. Once back at the laboratory sediment was stored at 4 ºC until 

processing into incubation vials (see below). 170 

 

The sediments were subjected to increasing temporal environmental variance (as a function of periodic 

wetting and drying transitions) and evaluated for associations between microbial membership, microbial 

properties, microbial community assembly, OM chemistry, absolute respiration rate (represented in this 

study as O2 consumption rates), and cumulative respiration rates represented as CPI. Aerobic respiration 

was chosen as the biogeochemical process since it influences global-scale energy and material fluxes 

(Fatichi et al., 2019), and because the hyporheic zone within the field system is predominantly aerobic 

(Graham et al., 2016, 2017b). Detailed experimental design and methods are provided in the following 

paragraphs. 

 180 
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2.2 Experimental design 

Sediments used in the batch reactors were sourced from one homogenized sediment pool. In turn, 10 g 

of sediment from the homogenized pool was added to each reactor vial. The sample set was then split 

into two groups, one inundated and the other allowed to desiccate. These conditions were maintained for 

23 days prior to the start of dynamic moisture manipulation, from January 29th to February 21st, 2019. 

This initial ‘preconditioning’ period was used to avoid measuring the immediate impacts of sampling 

disturbance and to allow time for desiccation. All replicate reactors were maintained in the dark, shaking 

at 100 rmp, at 21 ºC and were covered with a gas permeable Breathe-Easy (Milli-Pore Sigma, 

Burlington, MA) membrane that allowed for gas exchange and drying. After the preconditioning period 

in which sediments were consistently inundated or allowed to continuously desiccate, the  transition 190 

regimes (Fig. 2) were applied to the reactors starting on February 22nd, 2019. We refer to the time from 

Feb 22nd, 2019 onwards as the ‘transitions period’ for all treatments, even though some did not 

experience transitions between being inundated and dry. Each treatment had 6-7 replicates (detailed 

below). These regimes were designed around the number of wet/dry transitions experienced by 

sediments within a given treatment. Treatment regimes also caused variation in the cumulative number 

of days sediments were in a drying state. We imposed six different experimental treatment regimes (Fig. 

2) as follows:  

● 0 Transitions and 0 days of desiccation: Sediments were maintained at field moisture conditions 

for the preconditioning and transitions periods. This treatment had 6 replicates. 

● 1 Transition and 34 days of desiccation: Sediments were dry during the preconditioning and 200 

transitions periods, and transitioned once to the field moisture level prior to respiration 

estimation. This treatment had 6 replicates. 
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● 2 Transitions and 4 days of desiccation: Sediments were held at field moisture levels for the 

preconditioning period and then for the first 7 days of the transitions period, then transitioned to 

a dried state for 4 days, and transitioned to field moisture conditions prior to respiration 

estimation. This treatment had 7 replicates. 

● 3 Transitions and 31 days of desiccation: Sediments were dry during the preconditioning period 

and the first 4 days of the transitions period, then transitioned to field moisture levels for three 

days, then transitioned to 4 days in a dried state, and transitioned again to field moisture levels 

prior to respiration estimation. This treatment had 7 replicates.  210 

● 4 Transitions and 8 days of desiccation: Sediments were held at field moisture levels for the 

preconditioning period and transitioned to a dried state for the first 4 days of the transitions 

period, then transitioned to field moisture levels for 3 days, then transitioned to 4 days in a dried 

state, and transitioned to field moisture levels prior to respiration estimation. This treatment had 

7 replicates. 

● 5 Transitions and 27 days of desiccation: Sediments were dry during the preconditioning period 

and then transitioned to field moisture levels for the first 3 days of the transitions period, 

transitioned to a dried state for 2 days, transitioned to field moisture levels for 2 days, 

transitioned to a dried state for 2 days, and transitioned to field moisture levels for 3 days prior to 

respiration estimation. This treatment had 7 replicates. 220 

 

To avoid modifying electrical conductivity across experimental treatments, sterile deionized water was 

added to reactors to achieve/maintain field moisture levels according to the defined wet/dry regimes 

detailed above. For reactors with sediments that were below field moisture levels, deionized water was 
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added to achieve field moisture levels prior to respiration rate estimation. Changes in the total mass of 

reactors and volumes of water added during the course of the experiment are provided in Table S1. 

 

2.3 Respiration rate measurements 

Laboratory incubations were performed in batch reactors to quantify dissolved oxygen consumption 

rates. Borosilicate glass vials (20 ml)  (I-Chem™ Clear VOA Glass Vials, Thermo-Fisher, Waltham, 230 

MA)  served as incubator reactors. Factory calibrated oxygen sensor spots (Part# 200001875, diameter = 

0.5 cm, detection limit 15 ppb, 0 – 100 % oxygen; PreSens GmbH, Regensburg, Germany) were adhered 

to the inner vials of the reactor prior to sediment addition. Detailed description of sensor adhesion and 

non-destructive measurements of DO consumption using these sensors is provided in Garayburo-Caruso 

et al. (Garayburu-Caruso et al., 2020). Vials were grouped into six treatment regimes (explained in the 

previous section) representing inundation-drought transitions. 

 

Sample processing and incubations were performed in a laboratory at 21±1 °C. The reactors were 

monitored for 2 hours, with measurement of dissolved oxygen (DO) concentration (μmol Lˉ¹) every 30 

min.  DO concentration in each bioreactor was measured with an oxygen optical meter (Fibox 3; 240 

PreSens GmbH) connected to a 2 mm polymer optical fiber lined up to sense the sensor dot every thirty 

minutes. Respiration rates (μmol Lˉ¹ hˉ¹) were estimated as the slope of the linear regression between 

DO concentration and incubation time for each sample. Some non-linearity was observed in the 

relationship between DO concentration and time such that only the first 4 data points--time zero to 2 

hours--were used to fit a linear function. The slope of the linear function was taken as an estimate of 

respiration rate. 
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2.4 Microbial Analysis 

Post-incubation, the sediment slurry was transferred to centrifuge tubes (Item#28-108 Genesee 

Scientific) and centrifuged for 5 min at 3200 rcf and 20°C. The supernatant was removed and reserved 250 

for biogeochemistry analyses and sediment aliquots for DNA and RNA extraction were flash-frozen in 

liquid N2 and stored at −80 °C. The extraction, purification, and sequencing of sediment microbial 

gDNA were performed according to published protocol (Bottos et al., 2018). The extraction of RNA was 

performed using the Qiagen PowerSoil RNA extraction kit (Qiagen, Germantown, MD). RNA was 

treated with DNase and quantified with a Qubit RNA kit (Thermo Fisher, Waltham, MA). An aliquot of 

the RNA extraction was used to generate cDNA using  SuperScript™ IV First-Strand Synthesis System 

(Thermo Fisher Scientific, Waltham, MA). The 16S rRNA gene sequencing--for both gDNA and 

cDNA--followed the established protocol by The Earth Microbiome Project (Caporaso, 2018). Sequence 

pre-processing, operational taxonomic unit (OTU) assignment, and phylogenetic tree building were 

performed using an in-house pipeline, HUNDO (Brown et al., 2018). Sequences were deposited at 260 

NCBI’s Sequence Read Archive PRJNA641165. The final sample count of gDNA and cDNA, 

respectively, for each treatment regime, after dropping samples following quality filtering and 

rarefaction, was 5 and 5 (0 transition), 4 and 3 (1 transition), 5 and 4 (2 transitions), 7 and 6 (3 

transitions), 7 and 6 (4 transitions), and 7 and 5 (5 transitions). Rarefaction levels are provided below in 

the Statistics section. 
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2.5 Biogeochemistry 

Reserved supernatant was filtered through a 0.22 μm polyethersulfone membrane filter (Millipore 

Sterivex) and an aliquot was immediately removed for non-purgeable organic carbon (NPOC) and the 

remainder was stored at -20C until further OM high resolution analysis was conducted (see below). 270 

NPOC was determined by acidifying an aliquot of sample with 15% by volume of 2N ultra-pure HCL 

(Optima grade, Fisher#A466-500). The acidified sample was sparged with carrier gas (zero air, Oxarc# 

X32070) for 5 minutes to remove the inorganic carbon component.  The sparged sample was then 

injected into the TOC-L furnace of the Shimadzu combustion carbon analyzer TOC-L CSH/CSN E100V 

with ASI-L auto sampler at 680°C using 150 uL injection volumes.  The best 4 out of 5 injections 

replicates were averaged to get the final result.  The NPOC organic carbon standard was made from 

potassium hydrogen phthalate solid (Nacalia Tesque, lot M7M4380).  The calibration range was 0 to 70 

ppm NPOC as carbon. 

Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS) of post-incubation 

sediment slurry was conducted as per Danczak et al. (2020). Sample processing, injection, and data 280 

acquisition, processing and analysis was performed as per scripts provided in Danczak et al. (2020), with 

‘Start tolerance’ in Formularity changed to 8. Ten samples were dropped due to poor calibration, 

resulting in 5 replicates for 0 transition, 4 replicates for 1 transition, 5 replicates for 2 transitions, 6 

replicates for 3 transitions, and 5 replicates each for 4 and 5 transition regimes. 

 

From the FTICR-MS data, as in previous work (Garayburu-Caruso et al., 2020; Graham et al., 2018; 

Sengupta et al., 2019b; Stegen et al., 2018b), we followed LaRowe and Van Cappellen (LaRowe and 
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Van Cappellen, 2011) to calculate the Gibbs free energy for the half reaction of organic carbon 

oxidation under standard conditions (ΔG0
Cox). This calculation is based on elemental stoichiometries 

associated with molecular formulae assigned to individual molecules observed in the FTICR-MS data. 290 

The formulae assignments are part of the processing scripts described in (Danczak et al., 2020). As in 

previous work (Garayburu-Caruso et al., 2020; Graham et al., 2018; Sengupta et al., 2019b; Stegen et 

al., 2018b), we interpret larger values of ΔG0
Coxto indicate OM that is thermodynamically less favorable 

for oxidation by microbes. That is, larger values of ΔG0
Cox indicate OM that provides less net energy to a 

microbial cell per oxidation event, assuming all else is equal. Given the large numbers of assigned 

formulae within each sample, this resulted in thousands of ΔG0
Cox estimates within each sample, from 

which we estimated mean ΔG0
Cox for each sample. 

 

2.6 Estimating influences of community assembly processes 

The relative influences of community assembly processes influencing microbial community membership 300 

are emergent properties that cannot be calculated/inferred directly from knowledge of membership. To 

evaluate assembly processes as a link between membership and microbial processes (reference 

framework graphic) it is necessary to quantitatively estimate the relative influences of these processes. 

To do so we use a well-established null modeling framework based on phylogenetic relationships among 

microbial taxa  (Dini-Andreote et al., 2015; Stegen et al., 2012, 2015; Zhou and Ning, 2017). We refer 

the reader to these previous studies for details.  In brief, randomizations were used to generate estimates 

of phylogenetic associations among microbial taxa for scenarios in which microbial communities were 

stochastically assembled. These stochastic (i.e., null) expectations were compared quantitatively to 

observed phylogenetic associations to estimate the 𝛽𝛽-Nearest Taxon Index (𝛽𝛽NTI) (Stegen et al., 2012).  
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We used cDNA sequences rarefied to 27227 and gDNA sequences rarefied to 15106 sequences per 310 

sample to determine putatively active community and whole community 𝛽𝛽NTI values, respectively. 

Samples falling below these sequence counts were removed as indicated above in Sect. 2.4. A 𝛽𝛽NTI 

value of 0 indicates no deviation between the stochastic expectation and the observed phylogenetic 

associations, thereby indicating the dominance of stochastic assembly processes. As 𝛽𝛽NTI deviates 

further from 0, there is an increasing influence of deterministic assembly processes that drive 

community membership away from the stochastic expectation. 𝛽𝛽NTI values below -2 or above +2 

indicate statistical significance, with negative and positive values indicating less than or more than 

expected shifts in membership. 𝛽𝛽NTI is a pairwise metric measured between any two 

communities/samples, such that shifts in membership are related to changes between the pair of 

communities being evaluated. We used 𝛽𝛽NTI to study all pairwise community comparisons within each 320 

experimental treatment. Each community from a given reactor is therefore associated with multiple 

𝛽𝛽NTI values due to being compared to communities associated with other replicate reactors. In turn, the 

average 𝛽𝛽NTI was calculated for each reactor. As in Stegen et al. (Stegen et al., 2015), this provides a 

community-specific value for 𝛽𝛽NTI and thus an estimate of the relative influences of stochastic and 

deterministic processes causing deviations between a given community and all other communities within 

the same experimental conditions (Sengupta et al., 2019b). That is, the larger the absolute value of 𝛽𝛽NTI 

for a given community, the stronger the influence of deterministic assembly processes acting on that 

community (Stegen et al., 2015). In turn, these community-specific estimates were related to reactor-

specific measurements. For example, respiration rates were regressed against 𝛽𝛽NTI to evaluate the link 

between emergent properties (i.e., ecological assembly) and microbial processes (i.e., respiration rates).  330 
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2.7 Evaluating relationships between microbial characteristics and 

environment 

Respiration rate distributions, absolute 𝛽𝛽NTI values, and ΔG0
Cox  were  summarized as box plots. 

Pairwise Mann-Whitney test was performed to evaluate statistical differences between reactor-specific 

measurements (e.g.,respiration rates and thermodynamic properties) and treatment groups (cumulative 

dry and inundated days). Continuous bivariate relationships were evaluated with ordinary least squares 

regression. Prior to regression analyses, respiration rates were log-transformed due to non-linearities 

resulting from respiration being constrained to be at or above zero. Prior to log-transformation, half the 

smallest non-zero rate was added to each rate to enable inclusion of rate estimates with a value of zero.  340 

 

2.8 Control point influence calculation 

To characterize respiration rate distributions we used the control point influence (CPI) metric. CPI was 

recently developed (Arora et al., 2020) and is defined as the fraction of cumulative function (Rtot; e.g., 

total respiration rate) within a defined system that is contributed by individual rates that are above the 

system’s median rate (Rmed). To define cumulative function one must first define the system being 

evaluated. In our study, all replicate batch reactors within a given experimental treatment were 

conceptualized as a representative set of samples from a larger system experiencing the experimental 

conditions. Rtot for each treatment was therefore estimated as the sum of respiration rates across a 

treatment’s replicate reactors. CPI was estimated as the sum of respiration rates that fell above the 350 

median rate for a given treatment (Rabove) divided by Rtot for that treatment. That is, , 

where Ri are respiration rates from individual reactors that fell above Rmed, and .  
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An important feature of CPI is that it makes no assumptions of distribution normality, and can be 

estimated for rate distributions of any form (e.g., unimodal, multimodal, Gaussian, skewed, etc.). In 

most cases, CPI is constrained to have a minimum value of 0.5 (for a perfectly normal distribution with 

no outliers) and asymptotically approach 1 as a maximum value (e.g., for heavily skewed distributions 

with a small number of very high rates). CPI therefore quantitatively estimates the biogeochemical 

contribution of places in space or points in time that have elevated biogeochemical rates. 

 360 

3 Results  

To link microbial membership to emergent microbial community properties (Fig. 1 arrow 1) we used 

null modeling to estimate the contributions of stochastic and deterministic community assembly. Results 

from the null models indicate a relatively balanced mixture of stochasticity and determinism for both the 

whole community (gDNA-based) and putatively active community (rRNA-based) (Fig. S2). More 

specifically, stochasticity and determinism each governed 50% of turnover in microbial membership for 

the whole community and 33% and 67%, respectively, for the putatively active community. The relative 

contributions of the two deterministic components (homogeneous and variable selection) were strongly 

imbalanced. Homogeneous selection was responsible for 94% and 91% of the deterministic component 

for the whole and putatively active communities, respectively. The contributions of homogeneous and 370 

variable selection to the deterministic component must sum to 1, such that the variable selection was 

responsible for 6% and 9% of the deterministic component for the whole and putatively active 

communities, respectively. 

 

17

https://doi.org/10.5194/bg-2021-51
Preprint. Discussion started: 11 March 2021
c© Author(s) 2021. CC BY 4.0 License.



As shown in Figure 1 (arrow 2), we hypothesized a link between microbial community properties and 

microbial processes realized as a relationship between the strength of determinism and respiration rates. 

Such a relationship was not observed for the whole community (Fig. 3a), but we did observe a non-

linear decreasing relationship between respiration rates and the absolute value of βNTI for the putatively 

active community (Fig. 3b). The direction of this relationship (negative) was opposite of that expected. 

 380 

In our conceptual framework there are multiple ways in which connections among the environment, 

microbial properties, and microbial processes may be realized, in part due to the environment having 

multiple components relevant to our study (Fig. 1 arrows 3,4). More specifically, the environment was 

characterized here in terms of both disturbance (number of dry days; imposed by the experimental 

manipulation) and OM thermodynamics (ΔG0
Cox; this is an emergent aspect of the environment).  

 

Disturbance influenced both microbial properties and processes. These influences appeared to be non-

linear with experimental treatments associated with the two largest number of dry days (31 and 34) 

causing decreases in respiration rates (Fig. 4a) and stronger influences of deterministic homogeneous 

selection for the putatively active community (Fig. 4b). Disturbance had no clear influence on 390 

community assembly for the whole community (Figs. S3, S4a). Given the apparent binary nature of 

these results, we evaluated statistical significance by combining respiration rate data from treatments 

with 0-27 cumulative dry days and separately combining data from treatments with 31 or 34 cumulative 

dry days (Fig. S5). Respiration rates were significantly depressed in the treatments associated with 31 or 

34 cumulative dry days (W = 5, p < 0.001). The βNTI data are non-independent due to being based on 

all pairwise comparisons within a treatment. Standard statistical tools are therefore not applicable for 

assigning statistical significance when comparing βNTI distributions. However, as shown in Figures 4b 
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and S4b, there is an obvious shift to lower βNTI values for the putatively active community in the 

treatments with 31 or 34 cumulative dry days. 

 400 

The other aspect of the environment examined here (i.e., OM thermodynamics) also had significant 

relationships with both microbial processes (Fig. 1, arrow 3) and properties (Fig. 1, arrow 4). More 

specifically, respiration rates decreased significantly as a negative exponential function of increasing 

ΔG0
Cox (R2 = 0.26; p = 0.01; Fig. 5a). This indicates a decrease in respiration rate as OM thermodynamic 

properties shifted towards lower favorability for oxidation (i.e., larger values of ΔG0
Cox). Similarly, we 

found that the strength of deterministic assembly associated with the putatively active community 

increased linearly with ΔG0
Cox (R2 = 0.46; p < 0.0001; Fig. 5b). The strength of deterministic assembly 

associated with the whole community was unrelated to ΔG0
Cox (p = 0.64) (Fig. S6). 

 

The conceptual model described in Figure 1 focuses primarily on connections among environmental 410 

and/or microbial attributes, but there are potentially important relationships within attribute categories. 

In particular, within the environmental category there is the potential for an influence of disturbance on 

OM thermodynamics. Such an effect was found for OM thermodynamics as measured by ΔG0
Cox  (Fig. 

5c). Using the same approach as for analyses described above, we combined data for treatments with 0-

27 cumulative dry days and compared that distribution to data combined across treatments with 31 or 34 

cumulative dry days. A Mann-Whitney test comparing these distributions confirmed a significant 

change in the ΔG0
Cox  distribution (W = 189, p = < 0.001)(Fig. S7).  

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

The last component of the conceptual model considered here is the connection between microbial 

processes occurring in a given location and cumulative system function that aggregates across locations 420 
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(Fig. 1, arrow 5). It is at the system level that the influence of biogeochemical hot spots (or hot 

moments) can be evaluated. We conceptualized an aggregate system as the collection of replicate batch 

reactors within a given experimental treatment. Based on this definition, we estimated control point 

influence (CPI) as a measurement for the influence of biogeochemical hot spots. We observed a large 

amount of variation in CPI across experimental treatments, but there was no clear, direct influence of the 

treatments on CPI (Fig. 4). The largest value of CPI observed (> 0.9) was associated with the treatment 

that imposed 31 cumulative dry days. This treatment also had the lowest median respiration rates across 

all treatments (Fig. 4).  

 

4 Discussion 430 

Mechanistic evaluation of microbe-environment interactions is fundamental to understanding microbe-

mediated ecosystem function. Inspired by a microbe-environment-ecosystem framework proposed by 

Hall et al. (Hall et al., 2018) we proposed and evaluated a modified framework linking microbial 

characteristics (membership, emergent properties, processes), the environment (disturbance, OM 

thermodynamics), and cumulative ecosystem function (CPI) of hyporheic zone sediments. Our results 

provide clear support for the overall conceptual framework and further point to an iterative loop among 

OM thermodynamics, respiration rates, and microbial community assembly that can be initiated by 

externally-imposed disturbance. Furthermore, our results indicate that the iterative thermodynamics-

assembly-respiration loop may be initiated through threshold-like impacts of disturbance that were 

observed only after 31 or more cumulative days of desiccation. 440 
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We first evaluated emergent community properties as a function of microbial membership by studying 

the relative influences of stochasticity and determinism over community assembly. Taking this 

approach, we found fully balanced stochastic-deterministic influences over the whole community, in 

which each contributed to 50% of the variation in community composition. The relative influences of 

stochasticity and determinism have been quantified for many microbial systems and the estimates are 

highly variable (Tripathi et al., 2018; Wang et al., 2013). In addition, within the deterministic 

component of assembly, homogeneous selection had a far greater influence than variable selection. 

Previous work has also observed a broad range of contributions from homogeneous and variable 

selection (Fillinger et al., 2019; Graham et al., 2016; Li et al., 2019; Sengupta et al., 2019a; Whitman et 450 

al., 2018). As such, the assembly-associated outcomes observed here for the whole community are not 

unexpected relative to previous work. Very few studies, however, have examined the relative influences 

of different assembly components over putatively active microbial communities. 

 

For the putatively active communities we found that across all treatments both stochasticity and 

determinism were important, though deterministic assembly had greater influence. This deviates 

quantitatively from the whole community in which the influences of stochasticity and determinism were 

more balanced. Consistent with the whole community results, however, was the dominance of 

homogeneous selection within the deterministic component of assembly. The strong influence of 

homogeneous selection is likely due to selection-based constraints imposed by aspects of the 460 

experimental system that did not vary across treatments. For example, mineralogy is known to strongly 

influence microbial communities (Boyd et al., 2007; Carson et al., 2009; Doetterl et al., 2018; Fauvel et 

al., 2019; Mauck and Roberts, 2007; Stegen et al., 2016) and was homogenized across the experimental 
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batch reactors, thereby potentially imposing homogeneous selection on both the whole and putatively 

active communities. 

 

Our study uniquely evaluates null-model outcome of putatively-active community assemblies in 

hyporheic zone sediments, where homogeneous selection was further enhanced by our experimentally 

imposed hydrologic disturbances. Increased homogeneous selection in response to disturbance is 

consistent with previous work in a soil system. In the soil system, disturbance led to an immediate 470 

increase in homogeneous selection for the putatively active community (Jurburg et al., 2017). The strong 

influence of homogeneous selection on the putatively active community is not always observed, 

however, suggesting it may be tied to acute disturbance. That is, Jia et al. (Jia et al., 2020) recently 

found that within a natural soil chronosequence, variable selection was stronger for putatively-active 

communities while homogeneous selection influenced the whole community assembly. Our results 

combined with these previous studies indicate that community assembly of putatively-active members 

may be more closely linked to short-term environmental change than assembly of the whole community.  

 

In addition to being more sensitive to disturbance, we find that assembly of the putatively active 

community was more strongly tied to microbial processes (i.e., respiration rate), than was the whole 480 

community. A strong link between biogeochemical rates and the putatively active community is 

consistent with previous studies (Freedman et al., 2015; Levy-Booth et al., 2019). More specifically, we 

observed a negative relationship between respiration rate and absolute values of βNTI for the putatively 

active community, but no relationship for the whole community. The direction of this relationship is 

opposite to our hypothesis. While stronger selection should remove mal-adapted individuals, leading to 

higher biogeochemical rates (Graham and Stegen, 2017), increased selection in our experiment was 
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imposed by disturbance that appeared to directly suppress respiration rates due to desiccation (Baldwin 

and Mitchell, 2000; Manzoni et al., 2012). The simultaneous suppression of respiration and imposition 

of stronger selection led to the negative relationship between respiration and the strength of selection. 

The lack of such relationships when considering the whole community indicates that a greater focus on 490 

assembly dynamics of putatively active communities could reveal new insights into the multi-

component linkages among microbes, the environment, and function.  

 

Disturbance also impacted OM thermodynamics and respiration rates, potentially initiating an iterative 

loop among microbial assembly, microbial processes, and the abiotic environment. In this iterative loop 

the direction of causation between OM thermodynamics and microbial processes (Fig. 1, arrow 3) is not 

clear due to feedbacks, though we interpret a direction of causation from OM thermodynamics to 

microbial properties in terms of community assembly (Fig. 1 arrow 4). As such, there may be a loop 

between OM thermodynamics and microbial processes (i.e., respiration) embedded in a larger loop that 

also includes microbial properties (i.e., community assembly). Such feedbacks are inherent in complex 500 

systems and often lead to non-linear dynamics as observed here in terms of the threshold-like impact of 

desiccation on multiple system components (Pérez Castro et al., 2019; Prosser and Martiny, 2020).  

 

As key elements of the inferred system of feedbacks, the links among OM thermodynamic properties, 

respiration, and desiccation found here are consistent with recent work tied to the same field system. 

That is, Garayburu-Caruso et al. (Garayburu-Caruso et al., 2020) also showed decreasing aerobic 

respiration with decreasing favorability for oxidation (i.e., larger values of ΔG0
Cox) using sediments 

sourced ~2 years previously from the same field system. In addition, the impacts of desiccation found 

here are similar to Goldman et al. (Goldman et al., 2017) after re-inundation. This impact of desiccation 
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on respiration contrasts with the Birch effect (Birch and Friend, 1956) in soils whereby desiccation 510 

followed by re-wetting leads to enhanced respiration. The consistency across hyporheic zone studies and 

deviation from classical soil phenomena points to potential consistency in governing processes within 

the hyporheic zone that deviate from processes operating in soil systems. Further evaluation is needed 

across additional hyporheic zone systems to rigorously evaluate this inference, however.   

 

In addition to linkages between the environment and microbial aspects of the system, our study revealed 

connections within the environmental components of the conceptual framework. That is, greater 

cumulative desiccation caused an increase in ΔG0
Cox , indicating a significant change in OM 

thermodynamics (Fig. 5c). While our data cannot pinpoint governing mechanism(s), we hypothesize that 

the ΔG0
Cox  response may have been tied to increased ion concentration following desiccation. For 520 

example, OM chemistry may have been altered due to changes in abiotic sorption, limitations of 

microbially accessible C due to water potential constraints, and/or osmolyte production and formation of 

extracellular polymeric substances (Fierer et al., 2003; Gionchetta et al., 2020; Homyak et al., 2018).  

 

Irrespective of mechanisms, the shift in OM thermodynamics in response to desiccation  was associated 

with a decline in respiration. We infer a causal connection between OM thermodynamics and 

respiration, potentially triggered by desiccation-driven shifts in OM chemistry and/or microbial 

physiology. This causal connection is supported by recent work (Garayburu-Caruso et al., 2020) and the 

observation of a continuous function between ΔG0
Cox and respiration rate that transcended experimental 

treatments. Desiccation therefore likely influences and may even initiate an iterative loop among OM 530 

thermodynamics, microbial assembly, and biogeochemistry that underlies cumulative system function. 
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Cumulative system function can often be driven by ecosystem control points (Bernhardt et al., 2017), 

but we observed relatively little indication of such behavior. That is, estimates of control point influence 

(CPI) were relatively low across most treatments. CPI is theoretically constrained to range from 0.5-1, 

with lower values indicating smaller influences of control points. In our study, all but one treatment had 

CPI between ~0.5 and 0.7. The associated distributions of respiration rates did not contain obvious 

outliers such that we interpret CPI values in the 0.5-0.7 range to be relatively low and not strongly 

influenced by control points or biogeochemical hot spots/moments (McClain et al., 2003). The treatment 

with 31 cumulative days of desiccation diverged from the rest in having a CPI value of ~0.9. This large 540 

CPI was due to a single outlier (Fig. 5a) such that most of the cumulative respiration across reactors was 

contributed by that single reactor. We interpret that single reactor as a biogeochemical hot spot or 

control point within that experimental treatment. It is unclear, however, what led to such behavior as 

disturbance did not have any systematic influence on CPI.  

 

A strength of CPI as a metric is that it allows for direct quantitative comparisons across studies, systems, 

and scales. Ours is the first study to estimate CPI, however, such that we cannot yet make comparisons 

to previous work. Through future comparisons it will be possible to evaluate the strengths, weaknesses, 

and behavior of CPI. We expect that some patterns may emerge such as CPI having a greater likelihood 

to reach very high values (near 1) in systems with relatively low rates on average. In these conditions, 550 

even a modest quantitative increase in biogeochemical rates can lead to a large proportional change such 

that most cumulative function is from a single point in space and/or time, resulting in large CPI. We also 

expect that some biogeochemical processes will show greater variation in CPI than others, potentially 

due to variation in degree of functional redundancy (Louca et al., 2018). For example, processes such as 

respiration can be performed by numerous microbial taxa (i.e., there is high functional redundancy), 
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while others are more constrained to a relatively small number of taxa (e.g., ammonia oxidation). We 

hypothesize that CPI may be lower on average and less variable across systems and scales for 

biogeochemical processes with greater functional redundancy. Additional work will be needed to test 

this hypothesis.  

 560 

5 Conclusions 

In this study we coupled intrinsic characteristics of natural hyporheic zone sediments with imposed 

constraints in the form of desiccation to evaluate an a priori conceptual framework modified from Hall 

et al. (Hall et al., 2018). Our results demonstrated strong and often non-linear connections among 

desiccation, OM thermodynamics, assembly of the putatively active microbial community, and 

respiration rates. Collating our results points to further modification of the framework into an a 

posteriori conceptual model containing nested feedback loops (Fig. 6). This conceptual model is 

consistent with the recently proposed unification of microbial ecology around the concepts of external 

forcing, internal dynamics, and historical contingencies (Stegen et al., 2018a). That is, we hypothesize 

that external forcing imposed by desiccation initiates multiple internal loops that drive biological and 570 

chemical dynamics that, in turn, underlie respiration responses to re-wetting that are contingent on 

desiccation history. The development of conceptual models such as this is key to incorporating 

additional mechanistic detail into predictive simulation models (e.g., reactive transport codes). We 

encourage further evaluation and improvement of both our a priori and a posteriori concepts across 

environmentally divergent conditions to generate knowledge that is transferable across systems.  
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Figures 
 

 
 1010 
Figure 1. Integrated conceptual framework. The conceptual figure (modified from Hall et al. (2018)) 
details relationships (indicated by numbered arrows) between cumulative properties of the microbial 
community (e.g., microbial membership, community assembly properties, biogeochemical rates), 
environmental features (e.g., organic matter thermodynamics), and emergent ecosystem function.  
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Figure 2. Experimental design of batch reactor incubations subjected to six treatment regimes 
of inundated (blue line) and dry (red line) conditions. Black values on the left indicate the number of 
inundated/dry transitions, including the final inundation that all treatments experienced immediately 1020 
prior to the measurement of respiration. Red values on the right indicate the number of cumulative dry 
days (e.g., treatments with 1 or 3 transitions experienced 34 or 31 cumulative dry days, respectively. 
Transitions between inundated and dry conditions started on day 24. All treatments were held at either 
an inundated or dry state prior to day 24.   
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Figure 3. Natural log transformed respiration rates (i.e., O2 consumption) as a function of the 
absolute value of ꞵNTI for (a) whole communities or (b) putatively active communities. Larger absolute 
values of ꞵNTI indicate stronger influences of deterministic assembly. Nonlinearity was observed because the 1030 
respiration rate has a lower limit of 0 such that its relationship with ꞵNTI was fit as a negative exponential 
function. The significant regression model is shown as a red line, and statistics are provided on each panel. 
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Figure 4. Boxplot representations of respiration rate (a) and putatively active community βNTI 
(b) distributions as a function of the cumulative number of days reactors were in a dried state. 
Each value along the horizontal axis represents a different experimental treatment. On both panels the 
right hand axis provides estimates of control point influence (blue circles and lines) across the 
treatments. Horizontal red lines in (b) indicate significance thresholds; values below -2 indicate 
deterministic homogenous selection, values above +2 indicate deterministic variable selection, and 1040 
values between -2 and +2 indicate stochastic assembly. 
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Figure 5. Microbial processes and properties as a function of OM thermodynamics, and impacts 
of disturbance on OM thermodynamics. (a) Respiration rates (natural log transformed) decreased 
with decreasing favorability for oxidation (larger values of ΔG0

Cox). (b) The strength of deterministic 
selection measured as the absolute value of ꞵNTI increased with decreasing favorability for oxidation. Regression 
models are shown as red lines and statistics are provided on each panel. (c) Boxplot representations of the 
distributions of OM thermodynamics across experimental treatments. Significant increases were observed for 
treatments with 31 or 34 cumulative dry days. See text and Figure S7 for a description of statistics. 
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 1050 
 
Figure 6. Integrated conceptual interpretation of results from this study. Collectively, our results 
indicate that the external forcing imposed by disturbance leads to feedback between assembly of the 
putatively active community and respiration rates that is modulated by coupled dynamics in organic 
matter thermodynamics. Relative to Fig. 1, here external and internal aspects of the environment are 
separated. The arrows within the internal dynamics component are analogous to arrows 2,3, and 4 in 
Figure 1. The arrow from external to internal is not considered in Figure 1, and represents the impact of 
external forcing on all aspects of the internal system. These impacts are both direct effects of 
disturbance and indirect effects mediated through the internal feedback that collectively lead to impacts 
of re-wetting that are contingent on desiccation history. 1060 
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